Bebauungsplan Zum Hohehan Aurich - Dietrichsfeld, 26607 Aurich

Entwurfsplanung der Oberflächenentwässerung Versickerung von Niederschlagswasser

- Entwässerungsantrag -

Auftraggeber: Michael Goldenstein

Zum Hohehan 20 26607 Aurich

Bauherr: Michael Goldenstein

Zum Hohehan 20 26607 Aurich

Entwurfsverfasser:

INGENIEURBÜRO LINNEMANN BODEN | WASSER | ABFALL | TIEFBAU | ERSCHLIESSUNG

Kiebitzweg 10a, 27798 Hude-Wüsting

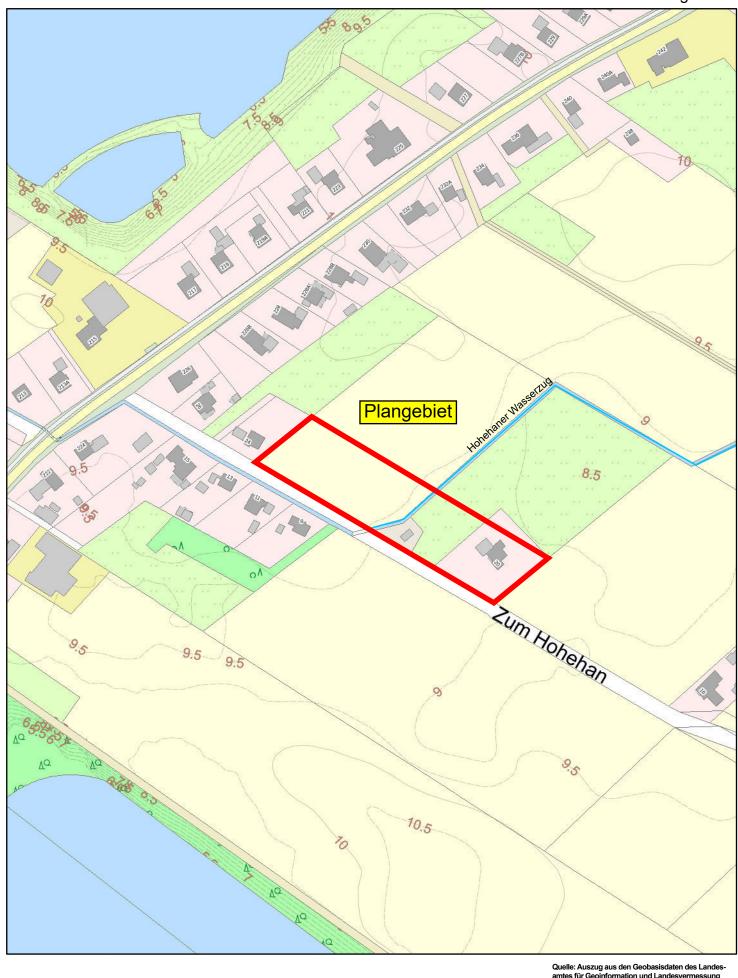
Tel. 04484 / 92002 - 0, Fax. 04484 / 92002 - 29

www.buero-linnemann.de

Projektbearbeitung: Franziska Schubert (B. Eng. Bauingenieurwesen)

Gerhard Otten (Dipl.-Bauingenieur)

Projektnummer: 2905

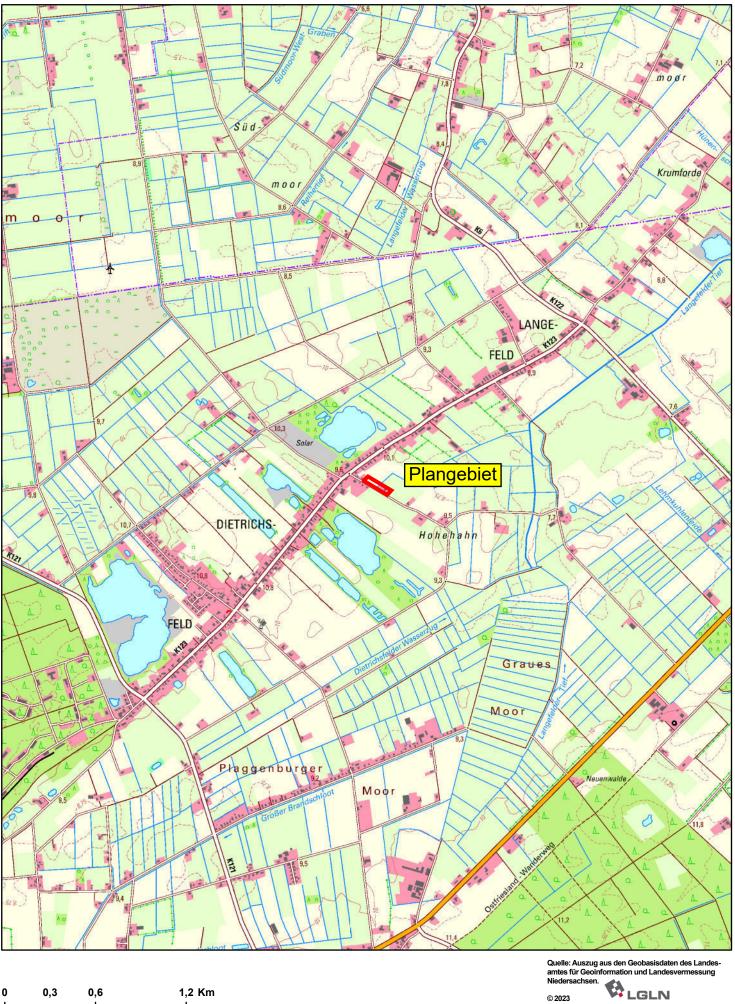

Hude-Wüsting, im Mai 2024

INGENIEURBÜRO LINNEMANN BODEN | WASSER | ABFALL | TIEFBAU | ERSCHLIESSUNG

ANLAGENVERZEICHNIS

Anlage 1.1	Übersichtslageplan, M.: 1 : 25 000
Anlage 1.2	Übersichtslageplan, M.: 1 : 2 500
Anlage 2	Ermittlung des mittleren Abflussbeiwertes
Anlage 3	Hydraulische Berechnung der Versickerungsanlage für WA1 nach DW-A A138
Anlage 4	Hydraulische Berechnung der Versickerungsanlage für WA2 nach DW-A A138
Anlage 5	Überflutungsnachweis für WA1 nach DIN 1986-100:2016-12, in Anlehnung an Gleichung 21
Anlage 6	Überflutungsnachweis für WA2 nach DIN 1986-100:2016-12, in Anlehnung an Gleichung 21
Anlage 7	Bohrprofile mit Schichtenbeschreibungen
Anlage 8	Korngrößenanalyse und Ermittlung der Durchlässigkeitsbeiwerte, erstellt: Schmitz + Beilke Ingenieure GmbH, Cloppenburger Straße 4a, 26135 Oldenburg, Stand: 15.03.2024
Anlage 9	Lageplan der Entwässerung, M.: 1 : 500

Anlagen


0 0,03 0,06 0,12 Km

20230605-133256_Umweltkarten

Maßstab: 1:2.500

Quelle: Auszug aus den Geobasisdaten des Landesamtes für Geoinformation und Landesvermessung Niedersachsen.

Maßstab: 1:25.000

Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz

1,2 Km

0,6

INGENIEURBÜRO LINNEMANN BODEN | WASSER | ABFALL | TIEFBAU | ERSCHLIESSUNG

Anlage 2

Bebauungsplan Zum Hohehan, Aurich - Dietrichsfeld, 26607 Aurich			Ermittlung der abflusswirksamen Flächen und des <u>mittleren</u> Abflussbeiwertes zur Bemessung einer Versickerungsanlage			Abflussbeiwerte nach DIN 1986 - 100 (Stand: 2016-12)										
Grunds	stücksfläche	GRZ	GRZ + 50%	überbaubare Fläche	Flächentyp	prozentualer Anteil	Flächenanteil		Flächenart	Mittlerer Abfluss- beiwert C _{i,m}	Gewählter Abfluss- beiwert C _{i,m}	prozentu- aler Anteil	undurch- lässige Fläche A _u	Mittlerer Abfluss- beiwert C _m		
[Bez.]	[m²]	[-]	[-]	[m²]		[%]	[m²]			[-]	[-]	[%]	[m²]	[-]		
1	2	3	4	5	6	7	8		9	10	11	12	13	14		
				2 x 4			5 x 7						8 x 11 x 12	(∑ 13) / 2		
								Schrägdach	Metall, Glas, Schiefer, Faserzement	0,90	1,00	80,00	949,16			
									Ziegel, Abdichtungsbahnen, Dachpappe	0,80	0,90		0,00			
								Flachdach	Metall, Glas, Schiefer, Faserzement	0,90	0,90		0,00			
					Dachflächen	70,00	1.186,45	(Neigung bis 3°)	Abdichtungsbahnen	0,90	0,90	20,00	213,56			
								(reagang blo o)	Kiesschüttung	0,80	0,80		0,00			
								Begrünte	Extensivbegrünung, unter 10 cm Aufbaudicke	0,40	0,40		0,00			
								Dachflächen	Intensivbegrünung, ab 30 cm Dicke	0,10	0,10		0,00			
WA1	3.766.5	0.20	0.45	1.694.93					Betonflächen, Schwarzdecken (Asphalt)	0,90	1,00		0,00	0.440		
WAT	3.766,5	0,30	0,45	1.694,93					Rampen	1,00	1,00		0,00	<u>0,410</u>		
									Betonsteinpflaster in Sand / Schlacke verlegt	0,70	0,75	100,00	381,36			
									Pflaster mit dichten Fugen	0,75	0,80		0,00			
					Straßen, Zufahrten,	30,00	508,48	Verkehrsflächen	Wassergebundener Kiesbelag	0,70	0,70		0,00			
					Hofflächen, Wege				Pflasterflächen mit Fugenanteil > 15 %	0,60	0,60		0,00			
												Versickerungsfähiges Pflaster (z.B. Drainsteine)	0,40	0,50		0,00
									Rasengittersteine und ähnliche Befestigungen	0,30	0,50		0,00			
									Lockerer Kiesbelag, Schotterrasen	0.20	0,20		0,00			
Σ			100.00	1.694.93		,				1.544,08						
				1			1100 1,00		Metall, Glas, Schiefer, Faserzement	0,90	1.00	80.00	1.045,93			
								Schrägdach	Ziegel, Abdichtungsbahnen, Dachpappe	0,80	0.90	00,00	0.00			
									Metall, Glas, Schiefer, Faserzement	0,90	0,90		0,00			
					Dachflächen	70,00	1.307,41	Flachdach	Abdichtungsbahnen	0,90	0,90	20,00	235,33			
					Bacimaciton	70,00		(Neigung bis 3°)	Kiesschüttung	0,80	0,80	20,00	0,00			
								Begrünte	Extensivbegrünung, unter 10 cm Aufbaudicke	0,40	0,40		0,00			
								Dachflächen	Intensivbegrünung, ab 30 cm Dicke	0,10	0,10		0,00			
								2 a c midorion	Betonflächen, Schwarzdecken (Asphalt)	0,10	1,00		0,00			
WA2	4.150,5	0,30	0,45	1.867,73					Rampen	1,00	1,00		0,00	<u>0,410</u>		
				1			1		Betonsteinpflaster in Sand / Schlacke verlegt	0,70	0,75	100,00	420.24			
									Pflaster mit dichten Fugen	0,70	0,75	100,00	0,00			
					Straßen, Zufahrten,	30,00	560,32	Verkehrsflächen	Wassergebundener Kiesbelag	0,75	0,80		0,00	_		
					Hofflächen, Wege	30,00	360,32	verkenishachen	Pflasterflächen mit Fugenanteil > 15 %	0,70	0,70		0,00			
				1			1				0,60					
									Versickerungsfähiges Pflaster (z.B. Drainsteine)	0,40	-,		0,00			
									Rasengittersteine und ähnliche Befestigungen	0,30	0,50		0,00			
				<u> </u>			100-5		Lockerer Kiesbelag, Schotterrasen	0,20	0,20		0,00			
					Σ	100,00	1.867,73						1.701,50			

 $\sum A_E = 7.917,00 \text{ m}^2$

 $\sum A_U = 3.245,57 \text{ m}^2$

Gesamter mittlerer Abflussbeiwert C_m: 0,410

Bebauungsplan Zum Hohehan,	Versickerung von
Aurich - Dietrichsfeld,	Niederschlagswasser
26607 Aurich	für WA1

Anlagen zur Versickerung von Regenwasser Dimensionierung einer Versickerungsmulde nach DWA - A 138

Muldenversickerung

Eine Versickerungsmulde ist eine dezentrale Anlage zur oberirdischen Versickerung von Niederschlagswasser mit Einstauhöhen von nicht mehr als 30 cm.

Die Niederschlagsabflüsse werden direkt von den umliegenden befestigten Flächen in die Mulde geleitet. Zudem ist eine punktuelle Einleitung über ein Regenwassernetz oder eine oberirdischen Rinne möglich, hierbei sollte ein besonderes Augenmerk auf den Bereich des Zulaufes legte werden.

Die Sohlenebene der Mulde sollte horizontal hergestellt werden um eine gleichmäßige Versickerung zu gewährleisten.

1. Eingangsdaten

k _f - Wert Oberboden (Muldenbett) [m/s]	2,00 x 10 ⁻⁵ (angenommen)
k _f - Wert Untergrund [m/s]	5,60 x 10 ⁻⁵ (gemäß Anlage 8, KRB 3)
Korrekturfaktor gemäß DWA-A 138, Tabelle B1	0,20 (Labormethoden)
Bemessungs k _f - Wert [m/s]	1,12 x 10 ⁻⁵
Geländeoberkante, i.M. [mNHN]	9,30
Bemessungswasserstand (MHGW) [m]	6,30
Grundwasserflurabstand [m]	3,00
Zulässiger Abstand UK Anlage bis MHGW [m]	1,00
Sohlhöhe der Versickerungsanlage [mNHN], ca.	9,00
Vorhandener Abstand UK Anlage bis MHGW [m]	2,70

2. Berechnungsgrundlagen der Mulde

Bezeichnung		
Teileinzugsfläche für WA1 [m²]	A_{ges}	3.766,50
Mittlerer Gesamt-Abflussbeiwert [-] (s. Anlage 2)	C _m	0,410
Abflusswirksame, undurchlässige Fläche [m²]	A _u	1.544,27
Gewählte mittlere Länge der Mulde [m]	L _M	55,00
Gewählte mittlere Breite der Mulde [m]	B _M	4,34
Mittlere Versickerungsfläche der Mulde [m²]	$A_{s,M}$	238,70
Bemessungs k _f - Wert [m/s]	k _{f,M}	1,12E-05
Wiederkehrzeit [a]	T _n	10
Bemessungshäufigkeit der Mulde [1/a]	n _M	0,10
Zuschlagsfaktor der Mulde [-]	f _{z,M}	1,15

Versickerung von
Niederschlagswasser
für WA1

A_{s,M}: Mittel aus max. Wasserspiegelbreite und Sohlbreite

Für die Bemessung von Versickerungsmulden ist in der Regel ein k_f -Wert der (maßgeblichen) belebten Bodenschicht von 2 x 10^{-5} m/s anzuwenden.

Die geplante Mulde soll eine mindestens 20 cm starke Oberbodenschicht erhalten. Die Durchlässigkeit von k_f = 2 x 10^{-5} m/s sollte vor, während und nach der Bauphase nachgewiesen und eingehalten werden.

3. Muldenberechnung für ein 10-jähriges Regenereignis

Der Bemessungsregen für die Versickerungsanlage wurde mit einer Regenhäufigkeit von n = 0,1 festgelegt. D.h. im statistischen Mittel wird die Versickerungsanlage nicht häufiger als einmal in T = 10 Jahren vollständig ausgeschöpft.

Zur Vorsorge für zukünftige Entwicklungen ist hier zudem ein Toleranzwert (Klimazuschlag) der Niederschlagshöhen- und spenden für die jeweilige Dauerstufe gemäß KOSTRA-DWD 2020 nach Vorgabe der Unteren Wasserbehörde des Landkreises Aurich berücksichtigt.

$$V_{M} = [(A_{u} + A_{s,M}) * 10^{-7} * r_{D(n)} - A_{s,M} * k_{f} / 2] * D * 60 * f_{z,M}$$

Regendaten zur Muldenberechnung						
Niederschlags- höhe	Dauer- stufe	Dauer- stufe	zugehörige Regenspende			
zzgl. Toleranzwerte UC je Wiederkehrintervall T = 10 a						
hN [mm]	D [min]	D [h]	r _{D(n)} [l/(s*ha)]			
15,0	5	0,08	499,8			
19,3	10	0,17	321,2			
21,9	15	0,25	243,3			
24,1	20	0,33	200,5			
26,9	30	0,50	149,5			
29,9	45	0,75	110,7			
32,3	60	1,00	89,9			
35,9	90	1,50	66,4			
38,4	120	2,00	53,2			
42,1	180	3,00	39,0			
45,5	240	4,00	31,5			
49,8	360	6,00	23,0			
55,1	540	9,00	17,1			

Berechnung des Muldenvolumens
V _M [m3]
30,28
38,60
43,51
47,49
52,43
57,13
60,84
65,18
67,53
69,83
70,97
68,88
63,48

Erforderliches Muldenvolumen [m³] erf.V _M =	70,97 m³
--	----------

Bebauungsplan Zum Hohehan,	Versickerung von
Aurich - Dietrichsfeld,	Niederschlagswasser
26607 Aurich	für WA1

4. Ergebnisse Mulden - Element

Bezeichnung						
Maßgebende Dauer des Bemessungsregens [min.]	D	=	180			
Maßgebende Regenspende [l/(s*ha)]	r _{D(n)}	П	39,0			
Erforderliches Mulden - Speichervolumen [m³]	V _M	=	70,97			
Maximale Einstauhöhe der Mulde [m]	h _M	=	0,30 < 0,30			
Vorhandene mittlere Länge der Mulde [m]	$_{\text{vorh.}}L_{M}$	=	55,00			
Vorhandene mittlere Breite der Mulde [m]	vorh.B _M	=	4,34			
Vorhandene <u>mittlere</u> Muldenfläche [m²]	vorh.A _{S,M}	=	238,70			
Hydraulische Belastung (Flächenbelastung)	A _u / A _{sM}	Ш	6,5 < 15			
Entleerungszeit der Mulde [h]	t _E	Ш	14,75			
Die <u>rechnerische</u> Entleerungszeit beträgt ca. 7,5 Stunden	< zul.t _E	Ш	24,00			
Versickerungsrate der Mulde [m³/s]	Qs	П	0,0013			
Versickerungsrate der Mulde [l/s]	Qs	-	1,34			

Die Versickerungsmulden werden möglichst oberirdisch über offene Zuleitungsrinnen mit den Abflüssen der angeschlossenen Flächen beschickt.

Es ist zu beachten, dass es sich bei $A_{S,M}$ um eine mittlere Versickerungsfläche handelt. Bei einer flachen Ausformung der Mulde wird A_{Smin} sehr klein und A_{Smax} etwa doppelt so groß wie die rechnerische Muldenfläche/Versickerungsfläche.

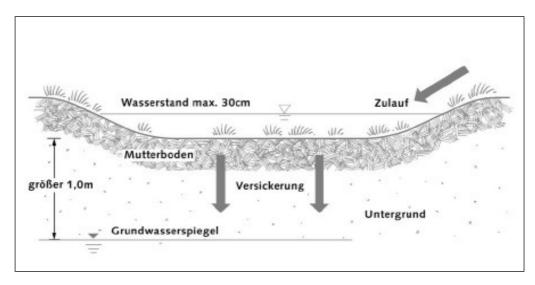


Abbildung 1: Querschnitt Muldenversickerung

Versickerung von
Niederschlagswasser
für WA1

Es ist zu beachten, dass es sich bei $A_{S,M}$ um eine mittlere Versickerungsfläche handelt. Bei einer flachen Ausformung der Mulde wird A_{Smin} sehr klein und A_{Smax} etwa doppelt so groß wie die rechnerische Muldenfläche/Versickerungsfläche.

Das Böschungsverhältnis sollte in der Regel 1 : 1,5 oder flacher ausgeführt werden.

5. Rechnerischer Nachweis der erforderlichen Muldenabmessungen

$$V_{M} = (h_{M}/3) * [F_{so} + (F_{so} * F_{wo})^{0.5} + F_{wo}]$$

Bezeichnung			
Beidseitiger Räumstreifen oder Böschungsbreite [m]	B _R	=	1,00
Böschungsneigung [-]	m	Ш	1,50
Maximale Einstauhöhe der Mulde [m]	h _M	=	0,30
Vorhandene mittlere Länge der Mulde [m]	$_{\mathrm{vorh.}}L_{M}$	=	55,00
Vorhandene mittlere Breite der Mulde [m]	_{vorh.} B _M	=	4,34
Vorhandene mittlere Muldenfläche [m²]	$_{\text{vorh.}}A_{S,M}$	=	238,70
Länge der Mulde in der Wasserspiegeloberfläche [m]	L _{wo}	=	55,45
Breite der Mulde in der Wasserspiegeloberfläche [m]	B _{wo}	=	4,79
Wasserspiegeloberfläche in der Mulde [m²]	F _{wo}	=	265,36
Länge der Mulde in der Sohle [m]	L _{so}	=	54,55
Breite der Mulde in der Sohle [m]	B_{so}	=	3,89
Sohlenfläche in der Mulde [m²]	F _{so}	II	212,43

Vorhandenes	Muldenvolumen			_{vorh.} V _M	=	70,89 m³
Erforderliche	es Muldenvolumen			_{erf.} V _M	=	70,97 m³
_{vorh.} V _M =	70,89 m³	≈	70,97 m³	_{erf.} V _M		Nachweis erfüllt
Vorhandene	mittlere Muldenfläd	:he		vorh.A _{S,M}	=	238,7 m²
Erforderliche	Muldenfläche im E	Bemessungs	seinstau	_{erf.} A _M	=	265,4 m²
Erforderliche	er Mindest-Platzbed	larf mit Räur	mstreifen	erf.A _{Mges.}	=	389,83 m²

Bebauungsplan Zum Hohehan,	Versickerung von
Aurich - Dietrichsfeld,	Niederschlagswasser
26607 Aurich	für WA2

Anlagen zur Versickerung von Regenwasser Dimensionierung einer Versickerungsmulde nach DWA - A 138

Muldenversickerung

Eine Versickerungsmulde ist eine dezentrale Anlage zur oberirdischen Versickerung von Niederschlagswasser mit Einstauhöhen von nicht mehr als 30 cm.

Die Niederschlagsabflüsse werden direkt von den umliegenden befestigten Flächen in die Mulde geleitet. Zudem ist eine punktuelle Einleitung über ein Regenwassernetz oder eine oberirdischen Rinne möglich, hierbei sollte ein besonderes Augenmerk auf den Bereich des Zulaufes legte werden.

Die Sohlenebene der Mulde sollte horizontal hergestellt werden um eine gleichmäßige Versickerung zu gewährleisten.

1. Eingangsdaten

k _f - Wert Oberboden (Muldenbett) [m/s]	2,00 x 10 ⁻⁵ (angenommen)
k _f - Wert Untergrund [m/s]	6,70 x 10 ⁻⁵ (gemäß Anlage 8, KRB 2)
Korrekturfaktor gemäß DWA-A 138, Tabelle B1	0,20 (Labormethoden)
Bemessungs k _f - Wert [m/s]	1,34 x 10 ⁻⁵
Geländeoberkante, i.M. [mNHN]	9,60
Bemessungswasserstand (MHGW) [m]	6,60
Grundwasserflurabstand [m]	3,00
Zulässiger Abstand UK Anlage bis MHGW [m]	1,00
Sohlhöhe der Versickerungsanlage [mNHN], ca.	9,30
Vorhandener Abstand UK Anlage bis MHGW [m]	2,70

2. Berechnungsgrundlagen der Mulde

Bezeichnung		
Teileinzugsfläche für WA2 [m²]	A _{ges}	4.150,50
Mittlerer Gesamt-Abflussbeiwert [-] (s. Anlage 2)	C _m	0,410
Abflusswirksame, undurchlässige Fläche [m²]	A _u	1.701,71
Gewählte mittlere Länge der Mulde [m]	L _M	90,00
Gewählte mittlere Breite der Mulde [m]	B _M	3,20
Mittlere Versickerungsfläche der Mulde [m²]	A _{s,M}	288,00
Bemessungs k _f - Wert [m/s]	k _{f,M}	1,34E-05
Wiederkehrzeit [a]	T _n	10
Bemessungshäufigkeit der Mulde [1/a]	n _M	0,10
Zuschlagsfaktor der Mulde [-]	f _{z,M}	1,15

INGENIEURBÜRO LINNEMANN BODEN | WASSER | ABFALL | TIEFBAU | ERSCHLIESSUNG

Bebauungsplan Zum Hohehan,	Versickerung von
Aurich - Dietrichsfeld,	Niederschlagswasser
26607 Aurich	für WA2
2007 / (011011	IUI WAZ

A_{s,M}: Mittel aus max. Wasserspiegelbreite und Sohlbreite

Für die Bemessung von Versickerungsmulden ist in der Regel ein k_f -Wert der (maßgeblichen) belebten Bodenschicht von 2 x 10^{-5} m/s anzuwenden.

Die geplante Mulde soll eine mindestens 20 cm starke Oberbodenschicht erhalten. Die Durchlässigkeit von k_f = 2 x 10^{-5} m/s sollte vor, während und nach der Bauphase nachgewiesen und eingehalten werden.

3. Muldenberechnung für ein 10-jähriges Regenereignis

Der Bemessungsregen für die Versickerungsanlage wurde mit einer Regenhäufigkeit von n = 0,1 festgelegt. D.h. im statistischen Mittel wird die Versickerungsanlage nicht häufiger als einmal in T = 10 Jahren vollständig ausgeschöpft.

Zur Vorsorge für zukünftige Entwicklungen ist hier zudem ein Toleranzwert (Klimazuschlag) der Niederschlagshöhen- und spenden für die jeweilige Dauerstufe gemäß KOSTRA-DWD 2020 nach Vorgabe der Unteren Wasserbehörde des Landkreises Aurich berücksichtigt.

$$V_{M} = [(A_{u} + A_{s,M}) * 10^{-7} * r_{D(n)} - A_{s,M} * k_{f} / 2] * D * 60 * f_{z,M}$$

Regendaten zur Muldenberechnung				
Niederschlags- höhe	Dauer- stufe	Dauer- stufe	zugehörige Regenspende	
zzgl. Tolerar	nzwerte UC je	Wiederkehrinte	vall T = 10 a	
hN [mm]	D [min]	D [h]	r _{D(n)} [l/(s*ha)]	
15,0	5	0,08	499,8	
19,3	10	0,17	321,2	
21,9	15	0,25	243,3	
24,1	20	0,33	200,5	
26,9	30	0,50	149,5	
29,9	45	0,75	110,7	
32,3	60	1,00	89,9	
35,9	90	1,50	66,4	
38,4	120	2,00	53,2	
42,1	180	3,00	39,0	
45,5	240	4,00	31,5	
49,8	360	6,00	23,0	
55,1	540	9,00	17,1	

Berechnung des Muldenvolumens
V _M [m3]
33,64
42,77
48,11
52,39
57,60
62,40
66,08
70,02
71,73
72,49
71,95
65,99
54,52

Erforderliches Muldenvolumen [m³]	_{erf.} V _M =	72,49 m³
-----------------------------------	----------------------------------	----------

Versickerung von
Niederschlagswasser
für WA1

4. Ergebnisse Mulden - Element

Bezeichnung			
Maßgebende Dauer des Bemessungsregens [min.]	D	=	180
Maßgebende Regenspende [l/(s*ha)]	r _{D(n)}	=	39,0
Erforderliches Mulden - Speichervolumen [m³]	V _M	=	72,49
Maximale Einstauhöhe der Mulde [m]	h _M	=	0,25 < 0,30
Vorhandene mittlere Länge der Mulde [m]	_{vorh} .L _M	=	90,00
Vorhandene mittlere Breite der Mulde [m]	_{vorh.} B _M	=	3,20
Vorhandene <u>mittlere</u> Muldenfläche [m²]	vorh.A _{S,M}	=	288,00
Hydraulische Belastung (Flächenbelastung)	A _u / A _{sM}	=	5,9 < 15
Entleerungszeit der Mulde [h]	t _E	=	10,44
Die <u>rechnerische</u> Entleerungszeit beträgt ca. 7,5 Stunden	< zul.t _E	=	24,00
Versickerungsrate der Mulde [m³/s]	Qs	=	0,0019
Versickerungsrate der Mulde [l/s]	Qs	=	1,93

Die Versickerungsmulden werden möglichst oberirdisch über offene Zuleitungsrinnen mit den Abflüssen der angeschlossenen Flächen beschickt.

Es ist zu beachten, dass es sich bei $A_{S,M}$ um eine mittlere Versickerungsfläche handelt. Bei einer flachen Ausformung der Mulde wird A_{Smin} sehr klein und A_{Smax} etwa doppelt so groß wie die rechnerische Muldenfläche/Versickerungsfläche.

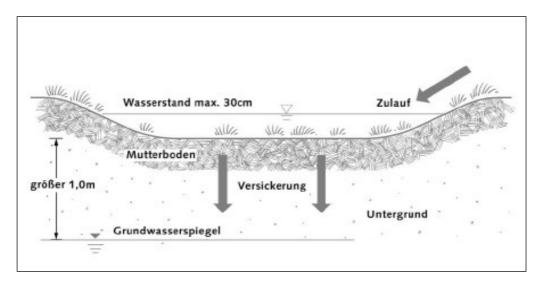


Abbildung 1: Querschnitt Muldenversickerung

Versickerung von
Niederschlagswasser
für WA2

Es ist zu beachten, dass es sich bei $A_{S,M}$ um eine mittlere Versickerungsfläche handelt. Bei einer flachen Ausformung der Mulde wird A_{Smin} sehr klein und A_{Smax} etwa doppelt so groß wie die rechnerische Muldenfläche/Versickerungsfläche.

Das Böschungsverhältnis sollte in der Regel 1 : 1,5 oder flacher ausgeführt werden.

5. Rechnerischer Nachweis der erforderlichen Muldenabmessungen

$$V_{M} = (h_{M}/3) * [F_{so} + (F_{so} * F_{wo})^{0.5} + F_{wo}]$$

Bezeichnung			
Beidseitiger Räumstreifen oder Böschungsbreite [m]	B _R	=	1,00
Böschungsneigung [-]	m	=	1,50
Maximale Einstauhöhe der Mulde [m]	h _M	=	0,25
Vorhandene mittlere Länge der Mulde [m]	$_{ m vorh.}L_{M}$	=	90,00
Vorhandene mittlere Breite der Mulde [m]	$_{\text{vorh.}}B_M$	=	3,20
Vorhandene mittlere Muldenfläche [m²]	$_{\text{vorh.}}A_{S,M}$	=	288,00
Länge der Mulde in der Wasserspiegeloberfläche [m]	L_{wo}	=	90,38
Breite der Mulde in der Wasserspiegeloberfläche [m]	B _{wo}	=	3,58
Wasserspiegeloberfläche in der Mulde [m²]	F _{wo}	=	323,33
Länge der Mulde in der Sohle [m]	L _{so}	=	89,62
Breite der Mulde in der Sohle [m]	B _{so}	=	2,82
Sohlenfläche in der Mulde [m²]	F _{so}	=	252,95

Vorhandenes	Muldenvolumen			$_{\mathrm{vorh.}}\mathbf{V}_{\mathbf{M}}$	=	72,35 m³
Erforderliche	s Muldenvolumen			_{erf.} V _M	=	72,49 m³
_{vorh.} V _M =	72,35 m³	≈	72,49 m³	_{erf.} V _M		Nachweis erfüllt
	,		,	<u> </u>		
Vorhandene	mittlere Muldenfläc	he		vorh.A _{S,M}	=	288,0 m²
Erforderliche	Muldenfläche im E	Bemessun	gseinstau	$_{ m erf.}{f A}_{ m M}$	=	323,3 m²
Erforderliche	r Mindest-Platzbed	arf mit Rä	umstreifen	$_{ m erf.}$ A $_{ m Mges.}$	=	515,24 m ²

Anlage 5

Bebauungsplan Zum Hohehan,	Überflutungsnachweis
Aurich - Dietrichsfeld,	bei Versickerungsanlagen
26607 Aurich	nach DWA-A 138 und DIN 1986 - 100
	für WA1

Überflutungsnachweis gemäß Arbeitsbericht der DWA-Arbeitsgruppe ES-3.1

Anwendungsbereich: Bei Flächen mit abflusswirksamer Fläche von Größer 800 m²

Nachweis einer sicheren, schadlosen Überflutung / Rückhaltung auf dem eigenen Grundstück

Berechnung in Anlehnung an Gleichung 21, DIN 1986-100

Gemäß Arbeitsbericht der DWA-Arbeitsgruppe ES-3.1 kann in Anlehnung an die Gleichung 21 der DIN 1986-100 zur Bestimmung der zurückzuhaltenden Regenwassermenge folgende Gleichung herangezogen werden:

$$V_{R\ddot{u}ck} = \left[\frac{r_{(D,30)} * (A_{ges} + A_{S})}{10000} - (Q_{S} + Q_{Dr}) \right] * \frac{D * 60}{1000} - V_{S} \ge 0$$

1. Eingangsdaten der Berechnung

Bezeichnung			
Maßgebendes Regenereignis für die Versickerungsanlage	T [a]	=	10
Maßgebendes Regenereignis für den Überflutungsnachweis	T [a]	=	30
Gesamtgröße der Gebäudedachflächen	A _{E,Dach} [m²]	=	1.186,45
Spitzenabflussbeiwert der Gebäudedachflächen	$C_{S,Dach}$	=	1,00
Abflusswirksame Fläche der Gebäudedachflächen	A _{U,Dach} [m²]	=	1.186,45
Gesamtgröße der befestigten Flächen	A _{E,FaG} [m²]	=	508,48
Spitzenabflussbeiwert der befestigten Flächen	$C_{S,FaG}$	=	0,90
Abflusswirksame Fläche der befestigten Flächen	A _{U,FaG} [m²]	=	457,63
Gesamte befestigte Fläche des Grundstücks (brutto)	A _{E,ges} [m²]	=	1.694,93
Abflusswirksame, "undurchlässige" Fläche des Grundstücks	A _{ges} [m²]	=	1.644,08
Mittlerer Spitzenabflussbeiwert	C _{sm} [-]	=	0,970
Bemessungs k _f - Wert (Durchlässigkeitsbeiwert)	k _f [m/s]	=	1,12E-05
Drosselabfluss (z.B. bei Mulden-Rigolen-Elementen)	Q _{Dr} [I/s]	=	0,00
Erforderliches Speichervolumen der Versickerungsanlage	V _{Serf.} [m³]	=	70,97
Vorhandenes Speichervolumen der Versickerungsanlage	V _{Svor.} [m³]	=	70,89
Maximale Fläche einer <u>oberirdischen</u> Versickerungsanlage	A _{SM} [m²]	=	265,40
Vorhandene Versickerungswirksame Fläche	A _S [m²]	=	265,40
Versickerungsrate der Versickerungsanlage	Q _S [l/s]	=	1,49

Bebauungsplan Zum Hohehan,	Überflutungsnachweis
Aurich - Dietrichsfeld,	bei Versickerungsanlagen
26607 Aurich	nach DWA-A 138 und DIN 1986 - 100
	für WA1

2. Berechnungsergebnisse

Dauer-	Dauer-	Niederschlags-	zugehörige		Erforderliches
stufe	stufe	höhe	Regenspende		Rückhaltevolumen
D	D	hN ₍₃₀₎	rN ₍₃₀₎		$V_{R\"uck}$
[min]	[h]	[mm]	[l/(s*ha)]		[m³]
30	0,50	27,2	151,1		-21,63
45	0,75	30,4	112,6		-16,85
60	1,00	32,9	91,4		-13,41
90	1,50	36,8	68,1		-8,70
120	2,00	39,7	55,1		-5,84
180	3,00	44,3	41,0		-2,39
240	4,00	47,9	33,3		-0,73
360	6,00	53,4	24,7		-1,12
540	9,00	59,5	18,4		-5,21
720	12,00	64,2	14,9		-12,19
1080	18,00	71,6	11,0		-31,09
1440	24,00	77,3	8,9		-52,47
2880	48,00	93,0	5,4		-149,53
4320	72,00	103,6	4,0		-258,15
Maßgebende Daue	er des Bemessungs	regens	D	=	-
Maßgebende Daue	er des Bemessungs	regens	D	=	-
Maßgebende Rege	enspende		rN	=	-
	·				
Zurückzuhaltende	e Regenwasserme	nge Überflutung	V _{Rück} [m³]	=	0,00 m³
Erforderliches Sp	eichervolumen de	r Versickerungsanlage	V _{Serf.} [m³]	=	70,97 m³
Erforderliches Go	ssamtvolumen (Vo	rsickerung + Überflutung)	V _{erf.} [m³]	=	70,97 m³
Liforderliches Ge	ssamtvolumen (vei	sickerung · Obernutung)	erf. L''' J		70,97 111
Vorhandenes Spe	eichervolumen der	Versickerungsanlage	V _{Svor.} [m³]	=	70,89 m³

V _{Svorh.} = 70,89 m ³	≈	V _{erf.} = 70,97 m ³	
--	----------	--	--

Das geplante Rückhaltevolumen ist ausreichend dimensioniert.

99,9 % vorhanden

Gemäß DIN 1986-100:2016-12 ist kein zusätzlicher Rückhalt erforderlich.

Anlage 6

Bebauungsplan Zum Hohehan,	Überflutungsnachweis
Aurich - Dietrichsfeld,	bei Versickerungsanlagen
26607 Aurich	nach DWA-A 138 und DIN 1986 - 100
	für WA2

Überflutungsnachweis gemäß Arbeitsbericht der DWA-Arbeitsgruppe ES-3.1

Anwendungsbereich: Bei Flächen mit abflusswirksamer Fläche von Größer 800 m²

Nachweis einer sicheren, schadlosen Überflutung / Rückhaltung auf dem eigenen Grundstück

Berechnung in Anlehnung an Gleichung 21, DIN 1986-100

Gemäß Arbeitsbericht der DWA-Arbeitsgruppe ES-3.1 kann in Anlehnung an die Gleichung 21 der DIN 1986-100 zur Bestimmung der zurückzuhaltenden Regenwassermenge folgende Gleichung herangezogen werden:

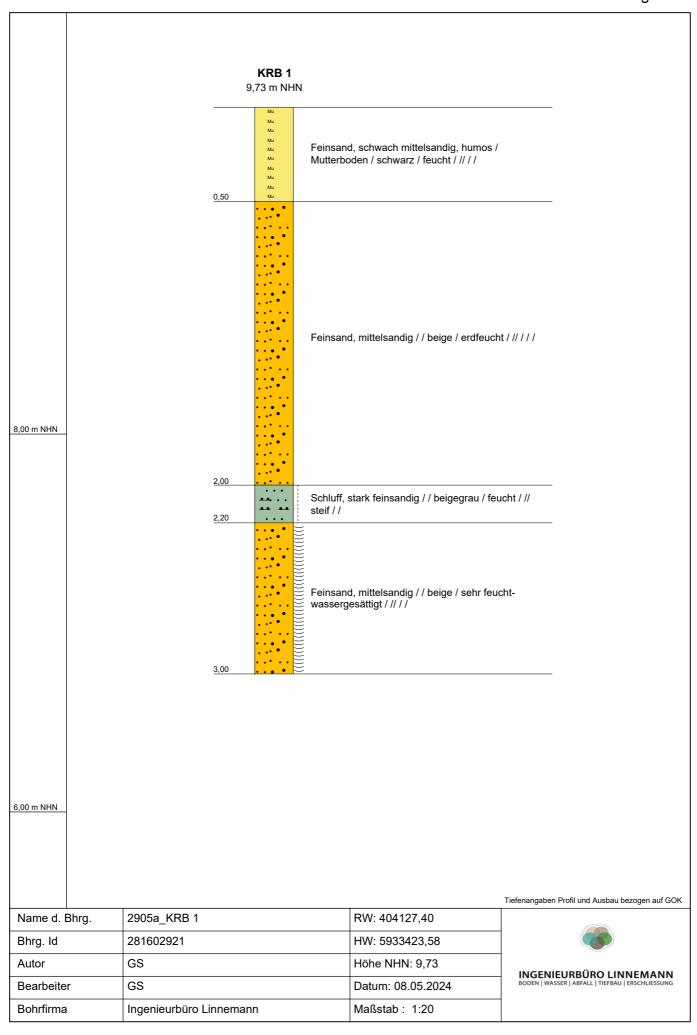
$$V_{Riick} = \left[\frac{r_{(D,30)} * (A_{ges} + A_{S})}{10000} - (Q_{S} + Q_{Dr}) \right] * \frac{D * 60}{1000} - V_{S} \ge 0$$

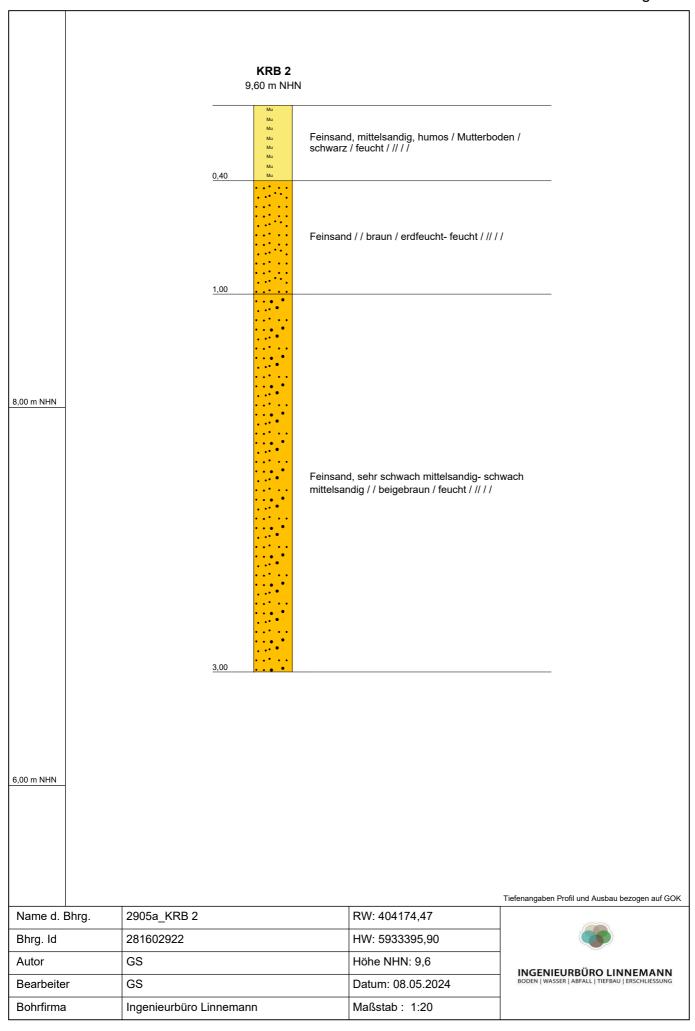
1. Eingangsdaten der Berechnung

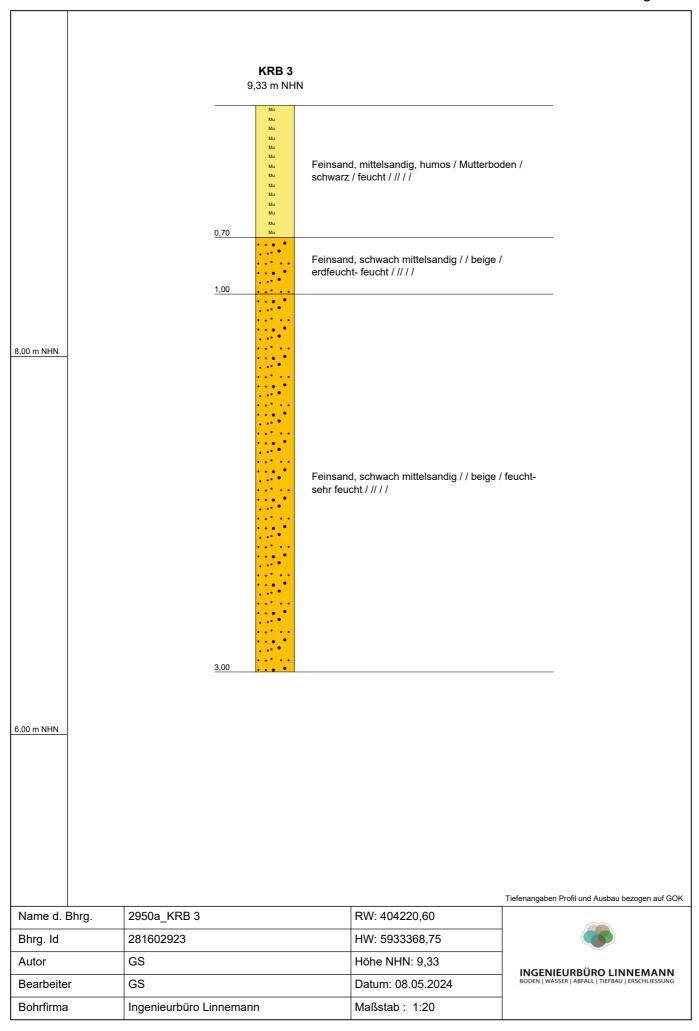
Bezeichnung			
Maßgebendes Regenereignis für die Versickerungsanlage	T [a]	=	10
Maßgebendes Regenereignis für den Überflutungsnachweis	T [a]	=	30
Gesamtgröße der Gebäudedachflächen	A _{E,Dach} [m²]	=	1.307,41
Spitzenabflussbeiwert der Gebäudedachflächen	$C_{S,Dach}$	=	1,00
Abflusswirksame Fläche der Gebäudedachflächen	A _{U,Dach} [m²]	=	1.307,41
Gesamtgröße der befestigten Flächen	A _{E,FaG} [m²]	=	560,32
Spitzenabflussbeiwert der befestigten Flächen	C _{S,FaG}	=	0,90
Abflusswirksame Fläche der befestigten Flächen	A _{U,FaG} [m²]	=	504,29
Gesamte befestigte Fläche des Grundstücks (brutto)	A _{E,ges} [m²]	=	1.867,73
Abflusswirksame, "undurchlässige" Fläche des Grundstücks	A _{ges} [m²]	=	1.811,70
Mittlerer Spitzenabflussbeiwert	C _{sm} [-]	=	0,970
Bemessungs k _f - Wert (Durchlässigkeitsbeiwert)	k _f [m/s]	=	1,34E-05
Drosselabfluss (z.B. bei Mulden-Rigolen-Elementen)	Q _{Dr} [l/s]	=	0,00
Erforderliches Speichervolumen der Versickerungsanlage	V _{Serf.} [m³]	=	72,49
Vorhandenes Speichervolumen der Versickerungsanlage	V _{Svor.} [m³]	=	72,35
Maximale Fläche einer <u>oberirdischen</u> Versickerungsanlage	A _{SM} [m²]	=	323,30
Vorhandene Versickerungswirksame Fläche	A _S [m²]	=	323,30
Versickerungsrate der Versickerungsanlage	Q _S [l/s]	=	2,17

Bebauungsplan Zum Hohehan,	Überflutungsnachweis
Aurich - Dietrichsfeld,	bei Versickerungsanlagen
26607 Aurich	nach DWA-A 138 und DIN 1986 - 100
	für WA2

2. Berechnungsergebnisse

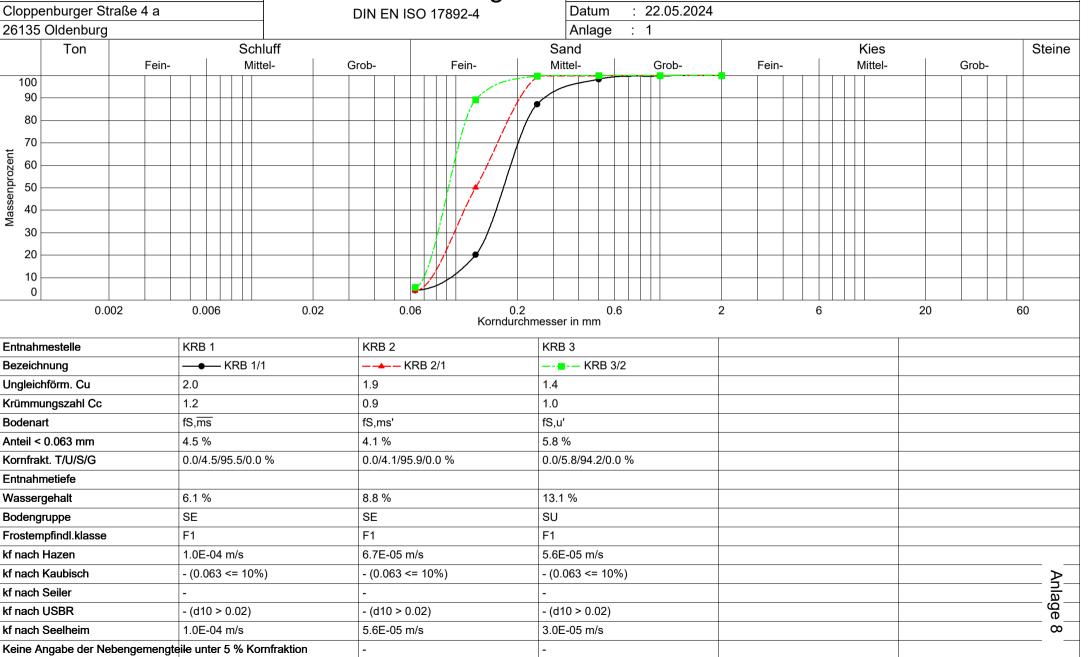

Dauer- stufe	Dauer- stufe	Niederschlags- höhe	zugehörige Regenspende		Erforderliches Rückhaltevolumen
D	D	hN ₍₃₀₎	rN ₍₃₀₎		$V_{R\"uck}$
[min]	[h]	[mm]	[l/(s*ha)]		[m³]
30	0,50	27,2	151,1		-18,18
45	0,75	30,4	112,6		-13,29
60	1,00	32,9	91,4		-9,90
90	1,50	36,8	68,1		-5,53
120	2,00	39,7	55,1		-3,25
180	3,00	44,3	41,0		-1,21
240	4,00	47,9	33,3		-1,16
360	6,00	53,4	24,7		-5,23
540	9,00	59,5	18,4		-15,25
720	12,00	64,2	14,9		-28,50
1080	18,00	71,6	11,0		-60,53
1440	24,00	77,3	8,9		-95,33
2880	48,00	93,0	5,4		-247,43
4320	72,00	103,6	4,0		-412,45
Maßgebende Dau	er des Bemessungs	regens	D	=	-
Maßgebende Dau	er des Bemessungs	regens	D	=	-
Maßgebende Reg	enspende		rN	=	-
Zurückzuhaltend	e Regenwasserme	nge Überflutung	V _{Rück} [m³]	=	0,00 m³
Eufoudouliahaa Su	aciahamraluman da	r Varaiakawan gaanlaga	\/ [m3]		72.40 m³
Errorderliches Sp	Deicnervolumen de	r Versickerungsanlage	V _{Serf.} [m³]		72,49 m³
Erforderliches Ge	esamtvolumen (Ve	rsickerung + Überflutung)	V _{erf.} [m³]	=	72,49 m³
Vorhandenes Spo	eichervolumen der	Versickerungsanlage	V _{Svor.} [m³]	=	72,35 m³

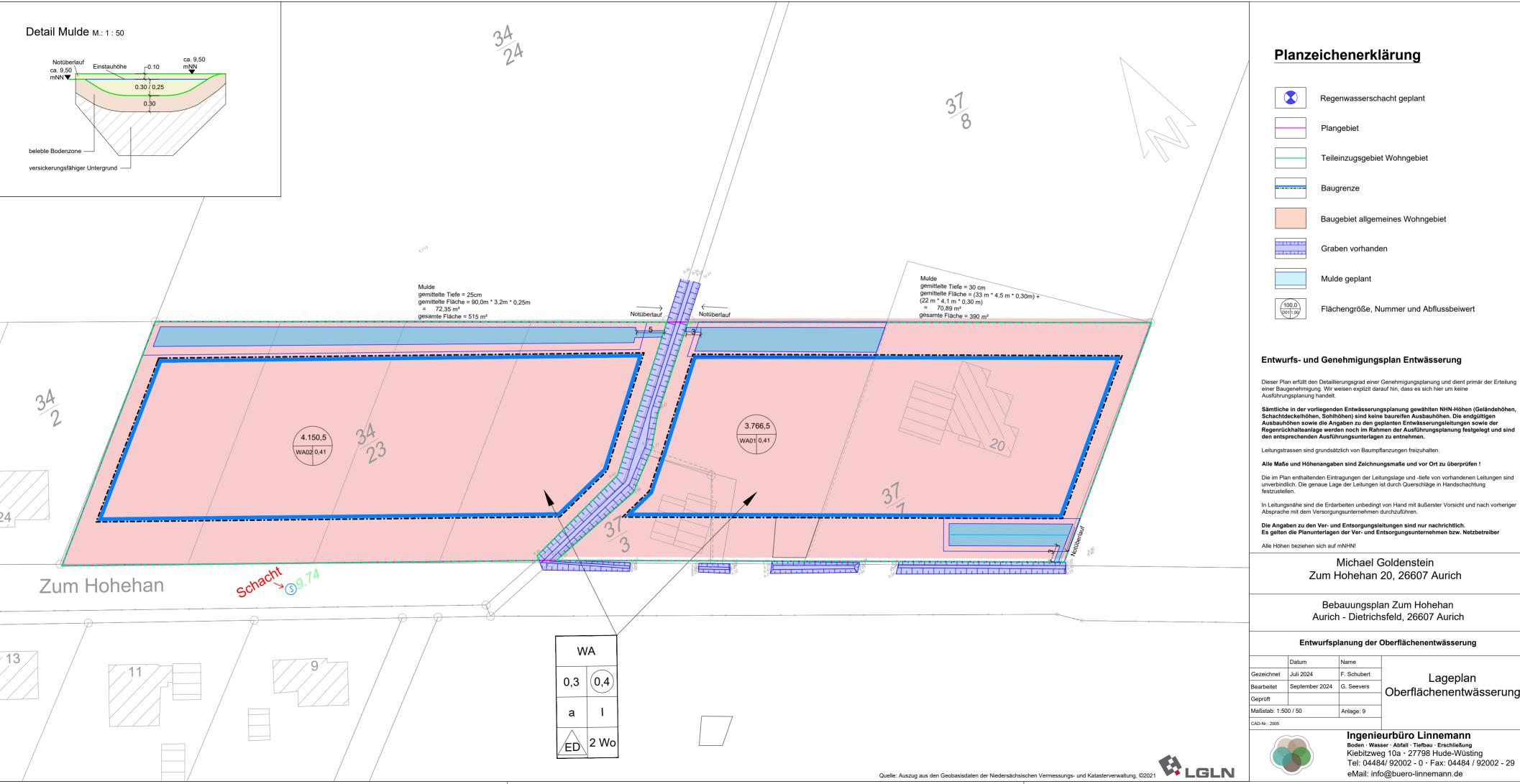

V _{Svorh.} = 72,35 m ³	≈	V _{erf.} = 72,49 m ³
--	----------	--


Das geplante Rückhaltevolumen ist ausreichend dimensioniert.

99,8 % vorhanden

Gemäß DIN 1986-100:2016-12 ist kein zusätzlicher Rückhalt erforderlich.




Schmitz + Beilke Ingenieure GmbH
Bodenmechanik, Erd- und Grundbau
Cloppenburger Straße 4 a

Kornverteilung

Projekt : Zum Hohehan Aurich_OFE - Linnemann 2905a

Projektnr.: 24.1137

Regenwasserschacht geplant

Teileinzugsgebiet Wohngebiet

Baugebiet allgemeines Wohngebiet

Flächengröße, Nummer und Abflussbeiwert

Entwurfs- und Genehmigungsplan Entwässerung

Dieser Plan erfüllt den Detaillierungsgrad einer Genehmigungsplanung und dient primär der Erteilung einer Baugenehmigung. Wir weisen explizit darauf hin, dass es sich hier um keine Ausführungsplanung handelt.

Sämtliche in der vorliegenden Entwässerungsplanung gewählten NHN-Höhen (Geländehöhen, Schachtdeckelhöhen, Sohlhöhen) sind keine baureifen Ausbauhöhen. Die endgültigen Ausbauhöhen sowie die Angaben zu den geplanten Entwässerungsleitungen sowie der Regenrückhalteanlage werden noch im Rahmen der Ausführungsplanung festgelegt und sind den entsprechenden Ausführungsunterlagen zu entnehmen.

Leitungstrassen sind grundsätzlich von Baumpflanzungen freizuhalten.

Alle Maße und Höhenangaben sind Zeichnungsmaße und vor Ort zu überprüfen!

Die im Plan enthaltenden Eintragungen der Leitungslage und -tiefe von vorhandenen Leitungen sind unverbindlich. Die genaue Lage der Leitungen ist durch Querschläge in Handschachtung festzustellen.

In Leitungsnähe sind die Erdarbeiten unbedingt von Hand mit äußerster Vorsicht und nach vorheriger Absprache mit dem Versorgungsunternehmen durchzuführen.

Die Angaben zu den Ver- und Entsorgungsleitungen sind nur nachrichtlich. Es gelten die Planunterlagen der Ver- und Entsorgungsunternehmen bzw. Netzbetreiber

Michael Goldenstein Zum Hohehan 20, 26607 Aurich

Aurich - Dietrichsfeld, 26607 Aurich

Entwurfsplanung der Oberflächenentwässerung

Lageplan Oberflächenentwässerung

Ingenieurbüro Linnemann Boden · Wasser · Abfall · Tiefbau · Erschließung Kiebitzweg 10a · 27798 Hude-Wüsting

eMail: info@buero-linnemann.de